- 12. Prove that the poles of tangents to the parabola $y^2 = 4ax$ with respect to the parabola $y^2 = 4bx$ lie on a parabola.
- 13. One focus of a hyperbola is located at the point (1, -3) and the corresponding directrix is the line y = 2. Find the equation of the hyperbola if its eccentricity is 3/2.
- 14. If PSQ is a chord passing through the focus S of a conic and l is semi latus rectum,

show that $\frac{1}{SP} + \frac{1}{SQ} = \frac{2}{l}$.

15. Evaluate $\int \frac{1}{(1-x)(4+x^2)} dx$.

- **16.** Solve $(x^2 y^2) dx xy dy = 0$.
- **17.** Solve $(1 + y^2) dx = (Tan^{-1}y x) dx_y$. **SECTION - C 5** × **7** =

LONG ANSWER TYPE QUESTIONS

Attempt any 5 questions. Each question carries 7 marks.

- **18.** Find the equation of the circle whose centre lies on X-axis and passing through (-2, 3) and (4, 5).
- **19.** Find the coordinates of the limiting points of the coaxial system determined by $x^2 + y^2 + 2x 6y = 0$ and $2x^2 + 2y^2 10y + 5 = 0$.
- **20.** Find the eccentricity, coordinates of foci, length of latus rectum and equations of directrices of the ellipse $9x^2 + 16y^2 36x + 32y 92 = 0$.

21. If $y = \frac{Sinh^{-1}x}{\sqrt{1+x^2}}$ then show that $(1+x^2)y_2 + 3xy_1 + y = 0$ and hence deduce that $(1+x^2)y_{n+2} + (2n+3)xy_{n+1} + (n+1)^2y_n = 0.$

22. Obtain reduction formula for $I_n = \int \sin^n x \, dx$ for an integer $n \ge 2$ and deduce the value of $\int \sin^4 x \, dx$.

23. Show that
$$\int_{0}^{\pi/2} \frac{x}{\sin x + \cos x} \, dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1).$$

24. Dividing [0, 6] into 6 equal parts, evaluate $\int x^3 dx$ approximately by using :

i) Trapezoidal rule
ii) Simpson's rule

7 = 35